Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add filters

Language
Document Type
Year range
1.
Results Phys ; 40: 105855, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1967085

ABSTRACT

Corona virus disease 2019 (COVID-19) is an infectious disease and has spread over more than 200 countries since its outbreak in December 2019. This pandemic has posed the greatest threat to global public health and seems to have changing characteristics with altering variants, hence various epidemiological and statistical models are getting developed to predict the infection spread, mortality rate and calibrating various impacting factors. But the aysmptomatic patient counts and demographical factors needs to be considered in model evaluation. Here we have proposed a new seven compartmental model, Susceptible- Exposed- Infected-Asymptomatic-Quarantined-Fatal-Recovered (SEIAQFR) which is based on classical Susceptible-Infected-Recovered (SIR) model dynamic of infectious disease, and considered factors like asymptomatic transmission and quarantine of patients. We have taken UK, US and India as a case study for model evaluation purpose. In our analysis, it is found that the Reproductive Rate ( R 0 ) of the disease is dynamic over a long period and provides better results in model performance ( > 0 . 98 R-square score) when model is fitted across smaller time period. On an average 40 % - 50 % cases are asymptomatic and have contributed to model accuracy. The model is employed to show accuracy in correspondence with different geographic data in both wave of disease spread. Different disease spreading factors like infection rate, recovery rate and mortality rate are well analyzed with best fit of real world data. Performance evaluation of this model has achieved good R-Square score which is 0 . 95 - 0 . 99 for infection prediction and 0 . 90 - 0 . 99 for death prediction and an average 1 % - 5 % MAPE in different wave of the disease in UK, US and India.

2.
Alexandria Engineering Journal ; 2022.
Article in English | ScienceDirect | ID: covidwho-1906643

ABSTRACT

The mucus fluid vehicle is impacted by the synthetic response that changes the physical science of liquid due to the thickness of the bodily fluid. Additionally, various issues in the respiratory system might happen because of bodily fluid adequacy. A central point of transportation of immunizations to forestall COVID-19 is the concentration level expected during movement, stockpiling, and dispersion. The current review stated that mucus fluid transportation is restrained through magnetic force originating due to heat variation. Permeable channel over respiratory disease and chemicals due to mass reaction–diffusion variation. The bodily fluid development is surveyed by the force, energy, and diffusion condition influence of body powers because of attractive field, source of heat cause of thermal conduction, resistance due to disease chemical reaction cause of concentration profile. The nonlinear arrangement of incomplete differential conditions is addressed by the Laplace transform technique, and MATLAB programming outcomes are initiated for momentum, temperature, and diffusion fields and inferred that the bodily fluid stream decelerates due to magnetic force. The skin friction, Nusselt number, Sherwood number, and the microorganism’s thickness are assessed and explained exhaustively. Furthermore, microorganisms are occupied in different elements to survey the mucus fluid mechanism.

3.
Chaos Solitons Fractals ; 153: 111534, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1499711

ABSTRACT

In this paper, a mathematical model is formulated to study the transmission dynamics of the novel coronavirus infection under the effect of treatment. The compartmental model is firstly formulated using a system of nonlinear ordinary differential equations. Then, with the help of Caputo operator, the model is reformulated in order to obtain deeper insights into disease dynamics. The basic mathematical features of the time fractional model are rigorously presented. The nonlinear least square procedure is implemented in order to parameterize the model using COVID-19 cumulative cases in Saudi Arabia for the selected time period. The important threshold parameter called the basic reproduction number is evaluated based on the estimated parameters and is found R 0 ≈ 1.60 . The fractional Lyapunov approach is used to prove the global stability of the model around the disease free equilibrium point. Moreover, the model in Caputo sense is solved numerically via an efficient numerical scheme known as the fractional Adamas-Bashforth-Molten approach. Finally, the model is simulated to present the graphical impact of memory index and various intervention strategies such as social-distancing, disinfection of the virus from environment and treatment rate on the pandemic peaks. This study emphasizes the important role of various scenarios in these intervention strategies in curtailing the burden of COVID-19.

4.
Alexandria Engineering Journal ; 2021.
Article in English | ScienceDirect | ID: covidwho-1458660

ABSTRACT

The coronavirus infectious disease (COVID-19) is a novel respiratory disease reported in 2019 in China. The infection is very destructive to human lives and caused millions of deaths. Various approaches have been made recently to understand the complex dynamics of COVID-19. The mathematical modeling approach is one of the considerable tools to study the disease spreading pattern. In this article, we develop a fractional order epidemic model for COVID-19 in the sense of Caputo operator. The model is based on the effective contacts among the population and environmental impact to analyze the disease dynamics. The fractional models are comparatively better in understanding the disease outbreak and providing deeper insights into the infectious disease dynamics. We first consider the classical integer model studied in recent literature and then we generalize it by introducing the Caputo fractional derivative. Furthermore, we explore some fundamental mathematical analysis of the fractional model, including the basic reproductive number R0 and equilibria stability utilizing the Routh-Hurwitz and the Lyapunov function approaches. Besides theoretical analysis, we also focused on the numerical solution. To simulate the model, we use the well-known generalized Adams-Bashforth Moulton Scheme. Finally, the influence of some of the model essential parameters on the dynamics of the disease is demonstrated graphically.

SELECTION OF CITATIONS
SEARCH DETAIL